
As its key idea, Executable and
Translatable Unified Modeling

Language (xtUML) separates application
and software architecture design and
weaves them together only at deployment
time via the following:
• Application models capture what the

application does clearly and precisely.
The models are executable, including
details relevant to the application but
independent of the software platform
(i.e., design and implementation
details).

• Software architecture designs –
defined in terms of transformation
rules and execution engine compo-
nents – are incorporated by a genera-
tor that produces code for the target
system. The software architecture
designs are completely independent of
the applications they support.

• A generator, which may be human,
weaves the application models and the
execution engine components result-
ing in 100 percent complete code for
modeled components.
The complete separation of the soft-

ware architecture design from the applica-
tion models supports concurrent design
of the application and the software archi-
tecture, compressing the development
schedule and time to market.

These benefits accrue partly as a result
of simplifying the tasks of analysis and
design because each can be carried out sepa-
rately. In particular, design is the definition
of a set of transformations that can be
applied to the various analysis elements.
Each design transformation rule thus
applies to all matching patterns in the appli-
cation, significantly simplifying the design
task. This also enables automation, which
yields greater benefits. For that reason, the
article assumes automation here.

xtUML Notation
xtUML defines a carefully selected,
streamlined subset of UML to support the
needs of execution- and translation-based
development, which is enforced not by
convention but by execution: Either a
model compiles, or it does not.

The notational subset has an underly-
ing execution model. All diagrams (e.g.,
class diagrams, state diagrams, activity

specifications) are projections or views of this
underlying model. Other UML models
that do not support execution such as use-
case diagrams may be used freely to help
build the xtUML models.

The essential components of xtUML are
illustrated in Figure 1 (see page 20), which
shows a set of classes and objects that use
state machines to communicate. Each state

machine has a set of actions triggered by the
state changes in the state machines that
cause synchronization, data access, and func-
tional computations to be executed.

A complete set of actions makes UML
a computationally complete specification
language with a defined abstract syntax for
creating objects, sending signals to them,
accessing data about instances, and exe-
cuting general computations. An action
language concrete syntax 2 provides a nota-
tion for expressing these computations.

An xtUML model with actions is not a
blueprint to be rewritten or filled out by
programmers, but an executable specifica-
tion. The difference between an ordinary
programming language and a UML action
language is analogous to the difference
between assembly code and a program-
ming language. They both completely
specify the work to be done, but they do
so at different levels of language abstrac-
tion. Programming languages abstract
away details of the hardware platform so
you can write what needs to be done with-
out having to worry about things such as
the number of registers on the target
machine, the structure of the stack, or
how parameters are passed to functions.
The existence of standards also makes
programs portable across multiple
machines.

xtUML allows developers to model the
underlying semantics of a subject matter
without having to worry about such things
as the number of processors, the data-
structure organization, or the number of
threads. In other words, just as program-
ming languages conferred independence
from the hardware platform, xtUML con-
fers independence from the software plat-
form, which makes xtUML models
portable across multiple development
environments.
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xtUML Dynamics
Figure 1 shows the static structure of
xtUML, but a language is not meaning-
ful unless there is a definition of the
dynamics, or how the language executes
at run time. To execute and translate,
xtUML must have well-defined execu-
tion semantics – and it does. xtUML has
specific, unambiguous rules regarding
dynamic behavior, stated in terms of a
set of communicating state machines,
the only active elements in an xtUML
program.

Each object and class (potentially)
has a state machine that captures the
behavior over time of each object and
class. Every state machine is in exactly
one state at a time, and all state machines
execute concurrently with respect to one
another. A state machine synchronizes
its behavior with another by sending a
signal that is interpreted by the receiver’s
state machine as an event. On receipt of
a signal, a state machine fires a transition
and executes an activity, a set of actions
that must run to completion before the
next event is processed.

State machines communicate only by
signals, and signal order is preserved
between sender and receiver instance
pairs. The rule simply enforces the
desired sequence of activities. When the
event causes a transition in the receiver,
the activity in the destination state of the
receiver executes after the action that sent
the signal. This captures desired cause and
effect in the system’s behavior. It is a
wholly separate problem to guarantee
that signals do not get out of order, links
fail, etc., just as it is a separate problem
to ensure sequential execution of

instructions in a parallel machine.
Each activity comprises a set of

actions such as a computation, a signal
send, or a data access. The semantics of
these actions are defined so that data
structures can be changed at translation
time without affecting the definition of
computation – a critical requirement for
translatability. The actions in each activi-
ty execute concurrently unless otherwise
constrained by data or control flow, and
these actions may access data of other
objects. It is the proper task of the mod-
eler to specify the correct sequencing and
to ensure object data consistency.

The application model, therefore,
contains the details necessary to support
application model execution verification
and validation, independent of design
and implementation. No design details
or code needs to be developed or added
for model execution: Formal test cases
can be executed against the model to
verify that application requirements have
been properly addressed.

Those are the rules, but what is real-
ly going on is that xtUML is a concur-
rent specification language. Rules about
synchronization and object data consis-
tency are simply rules for that language,
just as in C++ we execute one statement
after another and data is accessed one
statement at a time. We specify in such a
concurrent language so that we may
translate it onto concurrent, distributed
platforms, as well as fully synchronous,
single-tasking environments.

At system construction time, the
conceptual objects are mapped to
threads and processors. The generator’s
job is to maintain the desired sequencing

specified in the application models, but
it also may choose to distribute objects,
sequentialize them, even duplicate them
redundantly, or split them apart so long as
the defined behavior is preserved.

Model Compilers
A model compiler automatically gener-
ates target-optimized, 100 percent com-
plete code from models. A model com-
piler comprises two main components.
First, there is an execution engine that
supplies the execution infrastructure
such as storage schemes, action invoca-
tion, and signal sending. An execution
engine is a specific set of reusable com-
ponents that, when taken together, are
capable of executing an arbitrary exe-
cutable UML model. The execution
engine will therefore contain ways of
storing instances in some form, possibly
as objects, but not necessarily; some way
of invoking an action; some way of
sending signals; some way of reading an
attribute; and so forth. The selection of
the elements in the execution engine
determines the system properties such
as concurrency and sequentialization,
multiprocessing and multitasking, persis-
tence, data organization, and data struc-
ture choices. These choices, together
with the pattern of usages in the appli-
cation, determine the performance of
the system.

Second, a set of archetypes specifies
how to translate an application model
into code. Archetypes are a formaliza-
tion of the design patterns and transla-
tion rules. The archetype describes when
it should be used, the set of patterns to
be applied in code generation, and how
model components will be populated or
utilized to build code. (Archetype exam-
ples are provided in the next section.)
The combination of translated applica-
tion code, legacy code that is linked, and
the execution engine constitutes the run-
time system.

The archetypes use a generator to
traverse an arbitrary repository and pro-
duce text. The repository contains the
meaning of application model, distinct
from the diagrams. (The repository will
maintain graphical information too, but
that is not of concern for generation.)
The logical structure of the repository
(the metamodel) mirrors the semantic
rules described in the previous sections,
including the semantics of actions –
which means that the repository con-
tains the entire, detailed application
model.

The metamodel is a model of xtUML
using UML. It has classes such as Class,

Archetype Generated code
.select many stateS related to instances of 
   class->[R13]StateChart ->[R14]State where

(isFinal == False); 
public: 
  enum states_e 

{ NO_STATE = 0 , 
.for each state in stateS       .if ( not 
last stateS )

${state.Name } , 
       .else

NUM_STATES = ${state.Name} 
       .endif; 
.endfor; 
}; 

public: 
  enum states_e 

{ NO_STATE = 0 , 
Filling , 
Cooking , 
NUM_STATES = 

Emptying 
}; 
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Figure 1: The Structure of an xtUML Model



Executable and Translatable UML

September 2004 www.stsc.hill.af.mil 21

Attribute, Event, State, Action,
CreateAction, and ReadAction – all the
concepts we have discussed. When we
draw a class such as Batch in a developer
model using an xtUML-aware model
building tool, it creates an instance of
Class, with data describing the class so
created such as a Name (Batch), a
description, and the like. Similarly, when
we create an attribute amount of Batch,
this creates an instance of Attribute with
name (amount), the class it describes (a
reference to Batch), and a type (quantity).

The generator is a translation engine
that extracts application model informa-
tion, interprets the archetypes, and per-
forms the mapping of model compo-
nents to generate complete code. (Recall
that the repository contains the actions
too.) The partitioning of model compil-
ers into these pieces streamlines their
customization, construction, and main-
tenance. Changes and additions can be
made to the archetypes or run-time
library without having to contend with
the details of generator or repository
management.

Generator Operation
The generator and the archetypes consti-
tute a compilation environment. When
generating code, the generator extracts
information from the application model.
The generator then selects the appropri-
ate archetype for the to-be-translated
model element. The information extract-
ed from this model is then used to fill in
the blanks of the selected archetype. The
result is a fully coded model component.

The archetypes are applied either uni-
formly to certain kinds of model ele-
ments (all classes, say), or to model ele-
ments that have been marked to indicate
which rule to apply. For example, a class
could be marked to indicate the proces-
sor in which it resides, or a state chart
could be marked to show which storage
scheme (a list or a table) to use, and so
on. Using marks provides complete con-
trol over the output and enables perfor-
mance optimization at any level.

Population of an archetype common-
ly requires invocation of other arche-
types. These newly invoked archetypes, in
turn, often invoke other archetypes. The
creation of code, for what appears to be
one model element, can ultimately
involve several nested layers of arche-
types for multiple model elements. This
is fully automated by the generator. This
simple approach is incredibly powerful
for real-life applications.

The simple archetype in Table 1 gen-
erates code for private data members of

a class by selecting all related attributes
and iterating over them. All lines begin-
ning with a period (.) are commands to
the generator, which traverses a reposito-
ry containing the executable model and
performs text substitutions.

${pdm.Type}, as shown in Table 1,
recovers the type of the attribute and
substitutes it on the output stream.
Similarly, the fragment ${pdm.Name}
substitutes the name of the attribute.
The space that separates them and the
lone semicolon (;) is just text, copied
without change, onto the output stream.

In the more complete example in
Table 2, the archetype uses italics for ref-
erences to instances in the repository,
underlining to refer to names of classes

and attributes in the repository, and
noticeably different capitalization to dis-
tinguish between collections of instances
versus individual ones.

You may wonder what the produced
code is for. It is an enumeration of states
with a variable num_states automatically
set to be the count for the number of ele-
ments in the enumeration. (There is a
similar archetype that produces an enu-
meration of signals.) The enumerations
are used to declare a two-dimensional
array containing the pointers to the activ-
ity to be executed. You may not like this
code, or you may have a better way to do
it. Cool. All you have to do is modify the
archetype and regenerate. Every single
place where this code appears will then be

Archetype Generated Code
.select many stateS related to instances of 
   class->[R13]StateChart ->[R14]State where

(isFinal==False);
public: 
  enum states_e 

{NO_STATE=0,
.for each state in stateS

       .if ( not last stateS )

${state.Name},

       .else
NUM_STATES = ${state.Name}

       .endif;
.endfor;
};

public: 
  enum states_e

{NO_STATE = 0 ,  
Filling,
Cooking,
NUM_STATES =
Emptying

};
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Figure 2: Components of an Automated Solution

.Function PrivateDataMember( class class )

.select many pdmS from instances of Attribute related to class;

.for each pdm in pdmS

${pdm.Type} ${ pdm.Name};

.endfor

Table 2: Example Archetype
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changed. Propagating changes this way
enables rapid performance optimization.

While the generated code is less than
half the size of the archetype, the arche-
type can generate any number of these
enumerations, all in the same way, all
equally right or wrong.

Because the archetype is a data access
and text manipulation language, it can be
used in conjunction with the generator to
generate code in any language: C, C++,
Java, or Ada, and, if you know the syntax,
Klingon. We have used xtUML to gener-
ate Very High Speed Integrated Circuit
Hardware Description Language.

System Construction
Figure 2 shows how the pieces fit togeth-
er. To build a system, developers build
xtUML models that specify the desired
behavior of the application, and buy a
model compiler comprising a set of
archetypes and an execution engine. The
compilation process proceeds in two
phases. First, the archetypes traverse the
model as stored in the repository to pro-
duce source code. Second, the generated
code is compiled with the execution
engine library and any handwritten, lega-
cy, or library code. The result is the sys-
tem.

Examples
xtUML has been used on over 1,400
real-time and technical projects, includ-
ing life-critical implanted medical
devices, Department of Defense flight-
critical systems, 24x7 performance-criti-
cal fault-tolerant telecom systems, highly
resource-constrained consumer elec-
tronics, and large-scale discrete-event
simulation systems.

One telecommunications switch pro-
ject with an in-house model compiler
generated in excess of 4 million lines of
C++. One hundred percent of the mod-
eled code was generated, comprising
over 80 percent of the total system code.
The system was extremely real-time,
fault-tolerant, and used over 1,000 dis-
tributed processors [1].

A consumer electronic project com-
pared handwritten code with a model
compiler. The model compiler generated
faster code than the handwritten ver-
sion, though it was slightly bigger. This
difference was traced to different choic-
es made for caching variables. Both the
handwritten code and the generated
code met performance and size con-
straints [2].

A joint forces wargaming system
built xtUML models of the maritime
portion of the battlespace and translated

them into C++ that runs on an high
level architecture-based distributed dis-
crete event-simulation engine. The target
platforms were UNIX workstations and
Windows boxes. They used a cus-
tomized version of MC-2020 as the base
for the model compiler. One portion of
the simulation uses a special purpose
simulation language generated by arche-
types. The model compiler was derived
from a C++ model compiler with simi-
lar system characteristics.

Another organization that has built
its own model compiler, for sale, with
sophisticated transaction safety and roll-
back features reports between seven and
10 lines of generated C++ for each line
of action language. More importantly, all
that delicate code is known to be cor-
rect; it is not handcrafted by fallible, or
worse, creative coders.

For a completely worked out, publicly
available example model, see “Execu-
table UML: The Case Study” [3].

xtUML Capabilities
xtUML provides a unique opportunity
to accelerate development and improve
the quality, performance, and resource
utilization of real-time, embedded, sim-
ulation, and technical systems. The
approach provides for the following:
• Fully customizable translation gener-

ating 100 percent complete, target-
optimized code.

• Reduced defect rates from early exe-
cution of target-independent appli-
cation models by an average of 10
times (not 10 percent).

• Accelerated development of prod-
ucts with multiple releases, growing
or changing requirements, and fami-
lies of products.

• Concurrent design and application
analysis modeling to compress pro-
ject schedules.

• Powerful performance tuning and
resource optimization.

• Effective, practical reuse of target-
independent application models.

• Effective, practical reuse of applica-
tion-independent designs.

• Reduced maintenance costs and
extended product lifetimes.

This article described the fundamental
ideas behind xtUML and how it works in
practice. These ideas are more fully
described in [4].◆
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